Step-by-step magic state encoding for efficient fault-tolerant quantum computation
نویسنده
چکیده
Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation.
منابع مشابه
Minimizing resource overheads for fault-tolerant preparation of encoded states of the Steane code
The seven-qubit quantum error-correcting code originally proposed by Steane is one of the best known quantum codes. The Steane code has a desirable property that most basic operations can be performed easily in a fault-tolerant manner. A major obstacle to fault-tolerant quantum computation with the Steane code is fault-tolerant preparation of encoded states, which requires large computational r...
متن کاملThe robustness of magic state distillation against errors in Clifford gates
Quantum error correction and fault-tolerance have provided the possibility for large scale quantum computations without a detrimental loss of quantum information. A very natural class of gates for fault-tolerant quantum computation is the Clifford gate set and as such their usefulness for universal quantum computation is of great interest. Clifford group gates augmented by magic state preparati...
متن کاملDistillation of Non-Stabilizer States for Universal Quantum Computation
Magic state distillation is a fundamental technique for realizing fault-tolerant universal quantum computing, and produces high-fidelity Clifford eigenstates, called magic states, which can be used to implement the non-Clifford π/8 gate. We propose an efficient protocol for distilling other non-stabilizer states that requires only Clifford operations, measurement, and magic states. One critical...
متن کاملTowards Fault-Tolerant Quantum Computation with Higher-Dimensional Systems
The main focus of this thesis is to explore the advantages of using higher-dimensional quantum systems (qudits) as building blocks for fault-tolerant quantum computation. In particular, we investigate the two main essential ingredients of many state-of-the-art fault-tolerant schemes [133], which are magic state distillation and topological error correction. The theory for both of these componen...
متن کاملBound states for magic state distillation in fault-tolerant quantum computation.
Magic state distillation is an important primitive in fault-tolerant quantum computation. The magic states are pure nonstabilizer states which can be distilled from certain mixed nonstabilizer states via Clifford group operations alone. Because of the Gottesman-Knill theorem, mixtures of Pauli eigenstates are not expected to be magic state distillable, but it has been an open question whether a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014